On the Half-Life of 44Ti in Young Supernova Remnants Eric B. Norman and Edgardo Browne ⁴⁴Ti is one of the few long-lived γ-ray emitting nuclides produced in substantial amounts during a supernova explosion. Its characteristic 1157-keV γ ray was observed from the young supernova remnant Cassiopeia A [Cas A] and from supernova remnant RXJ0852.0-4622. In order to deduce the mass of ⁴⁴Ti ejected in these explosions using the observed y-ray fluxes, one needs to know their ages and distances as well as the half-life of 44Ti. For Cas A, historical records indicate that this supernova exploded in about 1680. For RXJ0852.0-4622, estimates of the age range from 680 to 1500 years. In the laboratory the electroncapture decay of 44Ti takes place with neutral atoms. For a neutral 44Ti atom, the probability of electron capture from the K (1s) shell is 0.8891 and from the L-shell (2s) is 0.0960. Therefore, neglecting electron screening, for a charge-state 19⁺ ⁴⁴Ti ion (i.e. one electron in the 2s shell) its half-life would be (60yr/0.9371) = 64 years. For a charge-state 20⁺ ion its half-life would be (60yr/0.8891) = 67.5 years, and for a charge-state 21^+ ion its half-life would be (60 yr/0.4446) = 135years. Finally, for a charge-state 22⁺ ⁴⁴Ti ion, electron capture decay would not be possible and the nucleus would become stable. The question thus arises as to how many electrons would be bound to a 44 Ti nucleus under the conditions of temperature and density found in a young supernova remnant. Assuming thermal equilibrium has been reached, at a temperature T and electron density N_e , the average number of bound atomic electrons in the atomic orbital with principal quantum number n is can be easily calculated. Using the observed temperatures and densities for these two supernova remnants leads to the conclusion that 44 Ti should be completely ionized (and thus stable) under the conditions that exist in these supernova remnants. However, the decay of 44 Ti in these remnants has been observed. Consequently, not all of the 44 Ti present in these objects is subject to such extremes of temperature and density. By fixing one of the parameters (e.g. mean electron density) at a measured value, one can calculate the maximum temperature at which, for example, there would be two K electrons and one L electron bound to a ⁴⁴Ti nucleus. Results of such calculations suggest that 44Ti would be highly ionized even at the lower range of temperatures inferred for CasA and RX J0852.0-4622. In order to estimate the mass of 44Ti ejected by these two supernovae, one must take the present-day observed gamma-ray fluxes and extrapolate them backward in time to the date of the explosion. Figure 1 shows this extrapolation for the values of the 44Ti half-life previously calculated for four ionization states. For RX J0852.0-4622 the possible 44Ti mass ejected by this supernova varies by a factor of 33 depending on the ionization state. Note that using the laboratory value for the 44Ti half-life leads to the largest possible mass of this radioisotope ejected by a supernova. Thus, we conclude that as the result of a possible lengthening of the 44Ti half-life ionization effects, the mass of 44Ti ejected from a supernova and deduced from a gamma-ray measurement constitutes only an upper limit.